

Systems Thinking Factors as Predictors of Success in an Engineering Design Task J. Z. Clay¹, M. H. Rahman², D. L. Zabelina¹, C. Xie³, X. Li², Z. Sha²

- ¹ Department of Psychological Science, University of Arkansas, Favetteville, AR
- ² Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR
- ³ Institute for Future Intelligence

1. Introduction

- Engineering design is a cognitive task, and one that is influenced by the way that the designer is thinking; to be a successful designer, one must think a certain way.
- Systems thinking is the type of thought that allows a designer to be successful in systems design, and is made up of many cognitive competencies¹
- Certain cognitive competencies are likely more relevant to engineering design than others - but which?
- The purpose of the present study was to investigate how psychological measures of cognitive competencies are related to success on a design task, and to see which, if any, were significant predictors of design outcome variables.

2. The Empirical Study

- To analyze the relationships between a designer's cognitive competencies and their success on a design task, participants engaged in a week-long computer-aided design challenge, after which they completed a set of psychological tasks.
- n = 49, (38 male, 11 female; mean age = 22.91, SD = 4.38, 39 undergraduate, 10 graduate)

3. Measures: The Design Task

- To measure design success, participants used the computer-aided design software Energy3D², to compete against each other to offer a design that would help solarize a local university campus.
- Designers were faced with very ambitious goals and hindered with many constraints; see the table below for an overview.

	Variable	Benchmark			
Goals	Annual Energy Output	1,000,000 kWh			
Gouis	Payback Period	10 years			
Constraints	Budget	\$1,900,000			
	Solar Panel Model	Choose 1 of 3 options			
	Panel Height	≥ 3.5m, depending on the Tilt Angle			
	Panel Width	5.25m - 6m			
	Panel Placement (overall)	Panel edges must not overlap			
	Panel Placement (in parking lot)	≥ 7.8m from the closest panel			

4. Measures: Cognitive Competencies

We draw from literature on systems thinking, and measure designers across five constructs using five psychological tests; see the table below.

Systems Thinking Cognitive Competency	Psychological Test(s)			
Divergent Thinking of Creativity	Alternate Uses Task (AUT) ³ ; Abbreviated Torrance Test for Adults (ATTA) ⁴			
Cognitive Ability	International Cognitive Ability Resource (ICAR) ⁵			
Working Memory	Keep Track test ⁶ ; n-back test			
Imagination	Four Factor Imagination Scale (<i>FFIS</i>) ⁷			
Personality	Big Five Inventory (<i>BFI</i>) ⁸ , Openness to Experience			

Regressions

Four models to predict four were significant

5. Results

Two significant correlations;

- Fluency and Total Cost p = 0.039
- Fluency and Total Output p = 0.039

6. Discussion

- One of the cognitive competencies that designers were measured was found to be significantly positively correlated to two measures of their performance on the design task.
- However, none of the predictive linear models were significant, and failed to explain any variance.

7. References

8. Acknowledgements

We gratefully acknowledge the financial support from the U.S. National Science Foundation (NSF) via grants #1842588, #1503196, and #1918847. Any opinions, findings, and conclusions expressed in this publication or presentation are those of the authors and do not necessarily reflect the view of the NSF.

outcomes; none

Correlations

	Linear Re	gressions	Correlations								
	p-value	Adjusted R ²	Working Memory	Cognitive Ability	Divergent Thinking - Fluency	Divergent Thinking - Originality	FFIS - Complexity	FFIS - Frequency	FFIS - Directednes s	FFIS - Emotional Valence	Openness to Experience
Output / Cost	0.811	-0.095	0.100	0.077	0.057	0.089	-0.008	-0.029	-0.208	-0.113	0.022
Total Cost	0.663	-0.054	0.106	0.027	0.293	0.122	0.068	-0.122	0.007	-0.064	0.005
Total Output	0.656	-0.052	0.153	0.057	0.292	0.168	0.065	-0.115	-0.055	-0.106	-0.022
Payback Period	0.739	-0.074	-0.156	0.009	-0.141	-0.100	0.005	0.084	0.144	0.121	-0.009