From 2D Sketching to 3D Printing: A Deep Learning Approach for 3D Mesh Generation with 2D Sketches

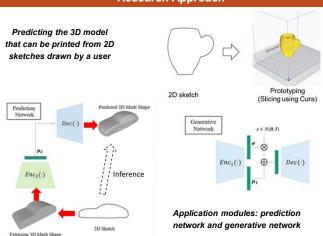
System Integration & TEXAS

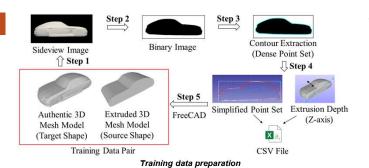
The University of Texas at Austin

Design Informatics Laboratory

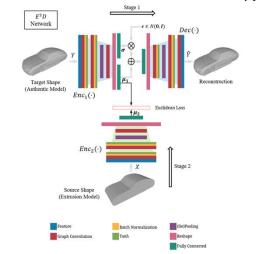
Xingang Li, Graduate Research Assistant | Advisor: Dr. Zhenghui Sha, Assistant Professor J. Mike Walker Department of Mechanical Engineering, The University of Texas at Austin

Background


- 2D Sketching (e.g., sketch of product silhouette) is usually used for design idea generation and design concept brainstorming
- 3D CAD models are built for visualization, engineering analysis, and rapid prototyping
- A large number of iterations could happen in an engineering design cycle between concept generation and evaluation (3D printing might also be used)
- · Can we expediate the 2D-to-3D design cycle?
- Can we provide a better decision support for design concept generation by directly connecting 2D ideation to 3D prototyping?


Conceptual design Define problem Gather information generation Evaluation Embodiment design Detailed design (e.g., 3D printing)

Research Objective


 To develop a deep learning approach to predicting 3D mesh models from 2D sketches, and meanwhile, to support generative design novel of shapes for fast iteration between design ideation and design prototyping.

Research Approach

- 1240 car models [1]
- Source shape (S_s) and target shape (S_t) form data pairs $\{S_s^i, S_t^i\}_{i=1}^{N=1240}$

Training module: E^2D network based on a target embedding variational autoencoder network architecture

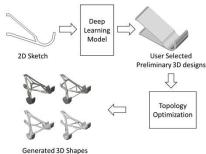
 E²D network (two encoder-one-decoder network) by concatenating Encoder 2 to a MeshVAE (Encoder 1 + Decoder) [2]

Results

· Prediction Network

· Generative Network: shape interpolation

· Generative Network: random generation


Conclusion and Future Work

Conclusion

- Predictive module: simple contour sketches to authentic 3D shapes
- Generative module: a large number of novel 3D shapes
- The generated shapes are in polygon mesh with high surface details which can be used for downstream evaluation or prototyping using 3D printing

Future work

- A user interface to allow human-computer interaction including input of 2D sketches and modification of generated 3D shapes
- Integrate deep generative model with topology optimization to facilitate the generation of designs with optimized engineering performance

Conceptual integrated deep generative model with topology optimization

Acknowledgments

The authors gratefully acknowledge the financial support from the NSF through the grant DUE-1918847. We also appreciate Dr. Miaoqing Huang for granting us access to the computer with GPUs for training the E^2D network.

References

- Umetani, N., 2017. "Exploring generative 3d shapesusing autoencoder networks". In SIGGRAPH Asia 2017 technical briefs. pp. 1–4.
- Yuan, Y.-J., Lai, Y.-K., Yang, J., Duan, Q., Fu, H., and Gao, L., 2020. "Mesh variational autoencoders with edge contraction pooling". In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-tern Recognition Workshops, pp. 274–275.