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ABSTRACT

This paper proposes a multi-agent Bayesian optimization
(MABO) framework as a reference model for rational design
teams to study the effects of information exchange on a team’s
search performance in finding global optimum of complex ob-
jective functions with many local optima. The core idea of the
framework has three main steps. First, the design space is divided
into regions based on the number of agents involved in the search.
In each region, only one agent works on the part of the objec-
tive function. Second, a global-local communication strategy is
developed to allow agents in local searches to share their sam-
pled design points with a global evaluator. The global evaluator
computes the posterior mean and variance based on all sampled
points from local agents and evaluates the acquisition function
(e.g., the expected improvement) to recommend the next sampling
decisions for local agents. Third, when making the decision about
where to sample next, each local agent only has access to the ex-
pected improvement evaluated in its local region and chooses
the design that yields the largest value locally. To evaluate how
the information exchange between agents and between local and
global impact the search results, our framework is compared with
a multi-agent model that does not allow information sharing and
global-local interaction. Furthermore, we evaluated the perfor-
mance of the model based on benchmark functions with varying
complexities and also investigated the impact of the number of
agents on search performance. We observe that when informa-
tion sharing is allowed and global-local interaction is enabled in
all scenarios, there is a significant improvement in convergence
speed as well as the success rate of convergence.

Keywords: Multi-agent System (MAS), Bayesian Optimiza-
tion (BO), Design Team, Design Space Exploration
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1. INTRODUCTION

Design space exploration is the process of finding the best
design solution that meets all requirements and constraints by
exploring and evaluating different design alternatives available
for a given problem [1]. It is typically a sequential process where
knowledge of the design space is acquired through a series of
design assessments, rather than starting with a full understand-
ing of the design space of evaluation metrics at the beginning.
Furthermore, a design process, particularly for complex design
problems, usually involves more than just one person making de-
cisions. It is rather a team effort where decisions made by other
members influence the decision of each member.

Coordinating the decisions of team members in such a pro-
cess is an essential problem that could significantly influence the
effectiveness of design teams [2]. The impact of mechanisms
and the frequency of interactions between design team members
on design outcomes have been studied in the literature [3, 4].
As an example, the work by McComb et al. finds that if design
team members all work on the same configuration problem, the
optimal number of interactions between team members should
be zero [5]. However, in practice, it is not quite common to
see teams where all members work on the same problem, but
there is rather a division of labor where each member works on
a different sub-problem within a system-level design problem.
Such a case deserves a new investigation since the coordination
of subproblems requires some information sharing between team
members [6]. In this paper, we computationally study the impact
of communication between team members (i.e., computational
design agents) on design exploration performance when each
agent works on a different portion of the design space. We use
rational agents that act to maximize their own utility, meanwhile
can share their respective design samples with a global evalua-
tor for optimal decision-making, in order to study the impact of
information sharing independent of confounding human factors.

Design space exploration can be formulated as a black-box
optimization problem when the space or function form is un-
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known to designers. Bayesian optimization (BO) is knowledge-
based reasoning to explore unknown design spaces informed by
past experience, or data [7], which provides rational design rec-
ommendations with future sampling decisions. BO typically
estimates the model using a Gaussian process, which takes into
account the uncertainty during the search and adopts an acquisi-
tion function that determines where to sample next in the process.
This approach effectively balances exploration and exploitation
to achieve the optimum [8].

The idea of BO has been used for decades in the literature,
including for well-known design optimization algorithms such as
Efficient Global Optimization [9]. Other examples include the
work in [10], which proposes a BO approach that can effectively
handle variable-size design space problems, with results demon-
strating superior performance compared to other optimization
methods. BO has also been applied to practical design applica-
tion contexts as well. The study in [11] argues that BO is an
efficient and effective method of exploring the design space of
hardware accelerators, which can significantly reduce the explo-
ration time while still achieving high-quality designs. Another
example in [12] introduces a data-driven approach to design space
exploration and exploitation based on BO for additive manufac-
turing.

In spite of those successful applications, however, for prob-
lems with a large design space and complex non-linear func-
tions, where many local optima exist, it is difficult for a single
BO to efficiently determine the global optimal value within the
design space. For complex design problems, the Multidisci-
plinary Design Optimization (MDO) literature promotes the use
of decomposition-based approaches where a system-level prob-
lem is partitioned into smaller subproblems to be solved in a
coordinated fashion [13]. For instance, Bayrak et al. show
that partitioning a high-dimensional problem into smaller sub-
problems enables the finding of effective solutions with multiple
agents compared to a case where the entire problem is addressed
by a single agent [14].

This paper presents a multi-agent BO (MABO) framework
to tackle the optimization of complex design problems, enabling
a team of agents to learn from their local design space and col-
laborate by sharing global information with the other agents in
the team. We use this framework as a reference model to compu-
tationally study the value of interactions and information sharing
within design teams where multiple rational agents combine their
information to solve local design problems and find the global op-
timal solution. To the best of our knowledge, the use of MABO
as a model of rational design teams to study the impact of in-
formation sharing accounting for uncertainty in design space is
new in the literature. Such a study can provide upper bounds
on team performance with an appropriate information-sharing
mechanism.

The MABO framework comprises three main steps: 1) De-
sign space partitioning: The design space is divided into regions
based on the number of agents involved in the search. Each re-
gion is searched by a single agent, which helps avoid redundant
search efforts and reduce computational cost; 2) Global-local
communication strategy: The MABO framework incorporates a
global-local interaction that enables agents in local searches to

share their sampled design points with a global evaluator. The
global evaluator evaluates the acquisition function based on the
sampled points from all agents to recommend the next sampling
decisions for the agents. This communication strategy allows for
effective information sharing and the utilization of global knowl-
edge, which helps avoid getting trapped in local optima. 3) Local
decision-making: Each agent only has access to the expected im-
provement evaluated in its local region and chooses the design
that yields the largest value locally. This allows for an effective ex-
ploration of the design space while prioritizing local optima. The
paper evaluates the performance of the proposed MABO frame-
work in different information-sharing scenarios using benchmark
functions of varying complexity and number of agents. The
results demonstrate that the MABO framework significantly im-
proves the convergence speed compared to a multi-agent model
that does not allow information sharing and global-local interac-
tion.

This paper is structured as follows. Section 2 provides techni-
cal background on BO. Next, Section 3 delves into the technical
details of the proposed MABO framework, outlining the prob-
lem formulation and the solution approach with multiple agents.
Sections 4 and 5 present the experimental settings and results,
comparing the proposed MABO method with a global-local in-
teraction and a method without a global evaluator. Section 6
further discusses the research results and draws insights into the
impact of information sharing on design team performance. Fi-
nally, Section 7 concludes the paper with a summary of findings
and limitations that lead to future work.

2. BACKGROUND ON BAYESIAN OPTIMIZATION
We use BO to model the decision-making of each agent in a

team to find the optimum of an unknown objective function in its
local region defined by a design space partitioning. This section
provides a brief introduction to the preliminaries of BO. A typical
BO process comprises two major components, 1) a statistical
inference method, typically Gaussian process (GP) regression,
to model the unknown objective function value with uncertainty
and 2) an acquisition function to decide where to sample in the
design space [15]. In order to find the global optimum of a black-
box objective function 𝑓 (x), where x ∈ 𝐴; 𝐴 is a 𝑑-dimensional
design space domain 𝐴 ⊆ R𝑑 , BO updates the posterior mean
and variance of a Gaussian process given the prior data, and an
acquisition function selects the next best guess for the optimum
based on the updated posterior probability distribution. Note that
this process assumes that agents always act rationally to maximize
their own utility represented by the acquisition function and does
not include confounding human factors in the analysis.

2.1 Gaussian process
Gaussian process is a commonly used statistical inference

model, which defines a distribution over possible unknown func-
tions [16]. BO realizes the reasoning about 𝑓 (x) by choosing an
appropriate Gaussian process prior:

f (x1:𝑘) ∼ GP (`0 (x1:𝑘) ,𝚺0 (x1:𝑘 , x1:𝑘)) , (1)

where the set of observations is D = (x1:𝑘 , f (x1:𝑘)),
x1:𝑘 = [x1, . . . , x𝑘], f (x1:𝑘) = [ 𝑓 (x1) , . . . , 𝑓 (x𝑘)] ,
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`0 (x1:𝑘) = [`0 (x1) , . . . , `0 (x𝑘)] is the mean vector by evalu-
ating a mean function `0 at each x1, ..., x𝑘 , and 𝚺0 (x1:𝑘 , x1:𝑘) =
[Σ0 (x1, x1) , . . . , Σ0 (x1, x𝑘) ; . . . ;Σ0 (x𝑘 , x1) , . . . , Σ0 (x𝑘 , x𝑘)]
is constructed by covariance Σ0 (·, ·) between each observa-
tion. Given the observation data D, the posterior probability
distribution is defined as [15]:

𝑓 (x) | f (x1:𝑘) ∼ GP
(︂
`(x), 𝜎2 (x)

)︂
`(x) = 𝚺0 (x, x1:𝑘) 𝚺0 (x1:𝑘 , x1:𝑘)−1 (f (x1:𝑘) − `0 (x1:𝑘)) + `0 (x)
𝜎2 (x) = Σ0 (x, x) − 𝚺0 (x, x1:𝑘) 𝚺0 (x1:𝑘 , x1:𝑘)−1 𝚺0 (x1:𝑘 , x) ,

(2)
where `(x) denotes the posterior mean and and 𝜎2 (x) denotes
the posterior variance.

2.2 Acquisition function
An acquisition function is a heuristic used to determine the

next point to sample in the search space. This function takes
the probabilistic surrogate model, introduced in Section 2.1 that
approximates the objective function as input. The next obser-
vation (sampling point) for the search is selected by optimizing
the acquisition function [15] while balancing the search strategy
between exploration and exploitation. Several acquisition func-
tions are widely used in BO, such as Probability of Improvement
(PI) [17], Expected Improvement (EI) [7], Lower Confidence
Bound (LCB) [18] and Thompson Sampling (TS) [19]. In this
study, we adopt EI for the acquisition function due to its high
sensitivity to improvements and fast convergence speed to the
optimum [9].

Assuming that the design problem is formulated as a mini-
mization problem, the corresponding utility function can be de-
fined as follows:

𝑢(x) = 𝑚𝑎𝑥(0, 𝑓 ∗ (x) − 𝑓 (x)), (3)

where 𝑓 ∗ (·) is the minimum value of 𝑓 (·) observed so far. Using
this utility, the acquisition function with EI can be formulated as
follows:

𝑎EI (x) =E[𝑢(x) | x, D]

=

∫ 𝑓 ∗

−∞
( 𝑓 ∗ − 𝑓 )N( 𝑓 ∗; `(x), 𝜎2 (x))d 𝑓

= ( 𝑓 ∗ − `(x))Φ
(︂
𝑓 ∗; `(x), 𝜎2 (x)

)︂
+ 𝜎2 (x)N

(︂
𝑓 ∗; `(x), 𝜎2 (x)

)︂
,

(4)

where ` and 𝜎2 are mean and variance functions of the posterior
probability distribution for 𝑓 given by Eq. (2).

With the acquisition function 𝑎EI shown in Eq. (4), the next
sampling point x is selected as the one that maximizes EI. The two
terms in Eq. (4) can be viewed as a trade-off between exploiting
the information from evaluating the points with low mean values
and exploring the points with high uncertainty.

3. MULTI-AGENT BAYESIAN OPTIMIZATION
3.1 Problem setup

In this section, we show the problem formulation to find
the minimum of a black-box function in a 𝑑-dimensional design

space 𝐴 ⊆ R𝑑 with 𝑁 agents in a team. The goal of agent 𝑖,
where 𝑖 ∈ {1, 2, ..., 𝑁} is to find the location of global minimum
x∗

x∗ = 𝑎𝑟𝑔𝑚𝑖𝑛x∈𝐴 𝑓 (x), (5)

where 𝑓 (·) is a black-box objective function and x =

(𝑥1, 𝑥2, ..., 𝑥𝑑) ∈ 𝐴.
We assume that the design task is divided into 𝑁 regions and

that each agent is assigned to one unique region in the design
space 𝐴𝑖 ⊆ 𝐴 to divide the labor among the agents in a team.
We assume that the division of labor is done at the beginning
before the design search starts. In this formulation, none of the
agents is allowed to search beyond their assigned region but only
communicate by sharing the local points they sampled in the
past. The search stops either after a predefined number of steps
or when an agent arrives sufficiently close to the local minimum
(e.g. when the smallest convergence rate among 𝑁 agents is
lower than a predefined threshold). Figure 1a shows an example
to illustrate this idea. In this example, the objective function
is an unknown function of an MAS consisting of three agents.
The design space has been partitioned into three local regions
depicted in Figure 1b. In each region, only one agent is assigned
to search the space locally to find the global minimum (marked
as a red star), whereas none of them knows where the global
minimum is. We do not allow multiple agents in one region
because that does not fundamentally change the problem to be
solved and only influences the convergence speed [5] because that
simply increases the number of sampling points in each search.

3.2 Solution process with MABO
To computationally study the solution to the problem pre-

sented in the preceding section using a team of agents, we develop
a multi-agent Bayesian Optimization (MABO) process that allows
all agents to work collaboratively to find the optimal solution in an
unknown design space. The algorithm for our proposed MABO
process is described in Algorithm 1. In this MAS, an important
feature is that it has a global evaluator and the agents are allowed
to contribute their locally sampled points to the global; mean-
while, the information processed at global will be shared back to
each individual for their decision-making on future moves. We
use this global-local interaction mechanism to study the value
of interactions among team members (i.e., agents) in solving a
complex problem (with multiple local optima) when there is a di-
vision of labor among team members. We perform this analysis
in comparison to a case where the agents do not use this global
evaluator, i.e., they do not communicate with each other.

Specifically in this MAS, when agents are allowed to com-
municate, a Gaussian process, as introduced in Section 2.1, uses
Bayesian inference to estimate the probability distribution of po-
tential values for 𝑓 (x) at a candidate point x. The posterior
distribution is iteratively updated by the global evaluator collect-
ing observation data contributed by all agents. The acquisition
function is located at the global level that evaluates the value of
the EI at a new point x based on the current posterior distribution
over 𝑓 . After global evaluation, each agent can only access the
EI information defined in its local region 𝐴𝑖 and will choose the
next sampling point that produces the local maximum of EI.
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(a) Objective function

(b) Contour plot

FIGURE 1: AN EXAMPLE OF THE OBJECTIVE FUNCTION IN 2D
DESIGN SPACE.

With the objective function shown in Figure 1a, one snapshot
of an iteration in MABO using Algorithm 1 is illustrated in Figure
2. Each agent picks one new point in each iteration in its local
region divided by the dashed line. The global evaluator collects
all sampled points (the black points) from each agent to evaluate
the posterior means and variance shown in the subfigures of the
first and second columns. Based on this evaluation, the acquisi-
tion function value is updated, as shown in the subfigures in the
third column. To move forward, the agents select the location of
the maximum value of the acquisition function in their respective
local region (the red points) as the next sampling point. In Figure
3, the sampled points of each agent are marked with different
colors, where the numbers on the points indicate the search in
each iteration step.

This approach (when agents share design samples with each
other through a global evaluator) can effectively find the global
optimum with high convergence speed (albeit without any theo-
retical guarantees) by involving multiple agents working on their
local regions in each iteration. The global evaluator can acquire
multiple observations within a single iteration, thereby enabling
a comprehensive evaluation of the objective function across all
local regions at each iteration.

Algorithm 1 MULTI-AGENT BAYESIAN OPTIMIZATION
Set local region 𝐴𝑖 for each agent in an unknown design space
𝐴

Place a Gaussian process prior D𝑖 = (x1:𝑘 , f (x1:𝑘)) in 𝐴𝑖 for
each agent
Observe 𝑓 at the initial step in design space 𝐴

for 𝑆𝑡𝑒𝑝 = 1 to 𝑀𝐴𝑋 − 𝑆𝑡𝑒𝑝 do
Update the posterior probability distribution with all avail-

able data on each local region 𝐴𝑖 as Eq. (2)
Update the acquisition function Eq. (4)
for agent 1 to 𝑁 do

Let x𝑖 be a optimizer of acquisition function Eq. (4) in
the local region 𝐴𝑖

Observe 𝑓 (x𝑖).
end for
Collect all data (x𝑖 , 𝑓 (x𝑖)) from agents

end for
Return a solution: the point x evaluated with the global opti-
mum 𝑓 ∗ (x).

4. EXPERIMENT SETUP
To investigate the impact of information exchange and in-

teractions between local agents (through the global evaluator),
we created another MABO process that does not have a global
evaluator and each agent solves a BO in its own region as a base-
line model. Therefore, we compare the following two MABO
processes in terms of their convergence speeds.

• Method 1: the MABO process without a global evaluator;

• Method 2: the proposed MABO proposed with a global
evaluator enabled.

We test these two processes on two different benchmark func-
tions with varying complexities, as shown in Table 1 and displayed
in Figure 4: 1) the Cosines function and 2) the Eggholder func-
tion. These two functions are widely recognized within the global
optimization literature, as they have been frequently utilized as
benchmarks in the context of BO. This is evidenced by their pre-
vious use in research studies such as [20, 21]. Compared to the
former function, the latter is more complex as it contains many
more local minima and maxima in the search space.

To study the scalability of the findings and evaluate the im-
pact of the number of agents on search performance, we per-
formed computational studies with three and five agents. As a re-
sult, we create three different experimental scenarios: 1) MABO
of the Cosines function with an MAS of three agents, 2) MABO
of the Eggholder function with an MAS of three agents, and 3)
MABO of the Eggholder function with an MAS of five agents.
To keep a fair comparison, the number of maximum iterations for
sampling is set to 50 for all experiments, and the initial number
of samples for the Gaussian process prior D𝑖 = (x1:𝑘 , f (x1:𝑘)) in
𝐴𝑖 is set to 𝑘 = 5 in each method and scenario in Algorithm 1.

5. RESULTS
Scenario 1: MABO of the Cosines function with an MAS of

three agents. Each agent is assigned to its local region defined
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TABLE 1: TWO BLACK-BOX FUNCTIONS

Name Formula Global minimum Global domain 𝐴

Cosines 𝑓 (x) = 1 − (𝑥2
1 + 𝑥2

2 − 0.3𝑐𝑜𝑠(3𝜋𝑥1) − 0.3𝑐𝑜𝑠(3𝜋𝑥2)) 𝑓 (0.314, 0.303) = −1.596 {x| − 1 ≤ x ≤ 1}

Eggholder
𝑓 (x) = − (𝑥2 + 47) sin

(︃√︂|︁|︁𝑥2 + 𝑥1
2 + 47

|︁|︁)︃
−𝑥1 sin

(︂√︁
|𝑥1 − (𝑥2 + 47) |

)︂ 𝑓 (512, 404.232) = −959.641 {x| − 520 ≤ x ≤ 520}

(a) Agent 1

(b) Agent 2

(c) Agent 3

FIGURE 2: THE GP MODEL AND ACQUISITION FUNCTION WITH A
GLOBAL EVALUATOR ARE ENABLED FOR AGENTS 1, 2, AND 3.

in Table 2. The sampling process and the search trajectory (in-
dicated by the number index) of each agent in its own region are
displayed in Figure 5. The best 𝑓 (x) (i.e., 𝑓 ∗ in Eq. (4)) observed
so far in each step shown in Figure 6 describes the convergence
speed for an MAS. According to Figure 6a, Agent 2 in Method
1 (i.e., the MABO without a global evaluator) was able to suc-
cessfully find the global minimum 𝑓 (0.314, 0.303) = −1.596 in
31 steps. Agent 1 and Agent 3 reached their local minima in 20
and 22 steps, respectively. With Method 2 (i.e., the MABO with
a global evaluator), Agent 2 reached the global minimum in only
six steps, as shown in Figure 6b. Agent 1 and Agent 3 found their
local minima in 9 and 18 steps, respectively.

Scenario 2: MABO of the Eggholder function with an MAS
of three agents. The local region for each agent is defined in Table
3 and the global minimum of this Eggholder function is located
in area 3, 𝑓 (512, 404.232) = −959.641. Due to the increased
complexity of the Eggholder function, finding the global mini-

FIGURE 3: SAMPLING PROCESS FOR THREE AGENTS. THE RED
STAR IS THE TRUE OPTIMUM. THE NUMBERS LABELED ON THE
POINTS ARE THE SEARCH IN EACH ITERATION STEP.

TABLE 2: COSINES FUNCTION. LOCAL DESIGN SPACE DOMAIN
FOR THREE AGENTS.

Local region 𝐴𝑖

Agent 1 {x| − 2𝑥1 + 𝑥2 + 2 ≤ 0}
Agent 2 {x| − 2𝑥1 − 𝑥2 − 2 ≤ 0, 2𝑥1 − 𝑥2 − 2 ≤ 0}
Agent 3 {x| − 2𝑥1 + 𝑥2 + 2 ≤ 0}

mum using MABO without global-local information exchange is
a challenging task. As shown in Figure 8a, Agent 3 cannot reach
the global minimum even after 50 steps. Actually, at Step 49, the
best performance achieved is from Agent 2. In Method 2 with
a global evaluator, MAS accomplished the search in 32 steps, as
illustrated in Figure 8b.

Scenario 3: MABO of the Eggholder function with an MAS
of five agents. In this scenario, the MABO methods were experi-
mented with the same function, i.e., the Eggholder function, but
the MAS in each method was expanded to five agents. The local
region of each agent is defined in Table 4. Figure 9 demonstrates
the sampling points and the corresponding trajectories for both
methods. It is observed that many sampling points are clustered in

TABLE 3: EGGHOLDER FUNCTION. LOCAL DESIGN SPACE DO-
MAIN FOR THREE AGENTS.

Local region 𝐴𝑖

Agent 1 {x| − 2𝑥1 + 𝑥2 + 520 ≤ 0}
Agent 2 {x| − 2𝑥1 − 𝑥2 − 520 ≤ 0, 2𝑥1 − 𝑥2 − 520 ≤ 0}
Agent 3 {x| − 2𝑥1 + 𝑥2 + 520 ≤ 0}
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local minima. This indicates that agents in both methods tend to
continue to exploit a location region if the previous sampling point
in that region yields the best 𝑓 (x) observed so far. The agents
start exploring other unknown spaces if no further improvement
can be made since the last-found best 𝑓 (x) in their current local
search regions. As shown in Figure 10a, Agent 5 in Method 1
reaches the global minimum 𝑓 (512, 404.232) = −959.641 in 43
steps, while Agent 5 in Method 2 finds the minimum in just seven
steps, as illustrated in Figure 10b.

6. DISCUSSION
The findings regarding the convergence speed of the methods

in different scenarios are summarized in Table 5. The compar-
ison between Scenario 1 and Scenario 2 indicates that, as the
complexity of the function increases, more iterations are needed
during the search for convergence. However, using the global

(a) Cosines function

(b) Eggholder function

FIGURE 4: TWO BENCHMARK FUNCTIONS. THE EGGHOLDER
FUNCTION IS MUCH MORE COMPLEX THAN THE COSINE FUNC-
TION, WITH MUCH MORE LOCAL OPTIMA THAN THE LATTER.

TABLE 4: EGGHOLDER FUNCTION. LOCAL DESIGN SPACE DO-
MAIN FOR FIVE AGENTS.

Local region 𝐴𝑖

Agent 1 {x|3𝑥1 + 𝑥2 + 1040 ≤ 0}
Agent 2 {x| − 3𝑥1 − 𝑥2 − 1040 ≤ 0}
Agent 3 {x|6𝑥1 + 𝑥2 − 520 ≤ 0,−6𝑥1 + 𝑥2 − 520 ≤ 0}
Agent 4 {x|3𝑥1 − 𝑥2 − 1040 ≤ 0,−6𝑥1 − 𝑥2 + 520 ≤ 0}
Agent 5 {x| − 3𝑥1 + 𝑥2 + 1040 ≤ 0}

(a) Method 1

(b) Method 2

FIGURE 5: DESIGN SPACE EXPLORATION IN SCENARIO 1

evaluator (and interactions among agents) is found to be more
robust against the increased complexity because Method 2 suc-
cessfully finds the global minimum within 50 steps, yet Method
1 failed in Scenario 2. Comparing the results of Scenario 2 and
Scenario 3 indicates that both MABO methods become more effi-
cient when more agents are available in a team. In particular, the
convergence speed of our proposed MABO method (i.e., Method
2) with five agents is about 4.5 times faster than that with three
agents when dealing with the same Eggholder function. In all
scenarios, the results indicate that the MABO with global-local
information exchange outperforms the one without such informa-
tion exchange.

TABLE 5: CONVERGENCE SPEED FOR EACH SCENARIO

Obj. Func. MAS with three agents MAS with five agents
Method 1 Method 2 Method 1 Method 2

Cosines 31 6 N/A N/A
Eggholder >200 32 43 7
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(a) Method 1

(b) Method 2

FIGURE 6: CONVERGENCE SPEED IN SCENARIO 1

Although these results are intuitive, they lead to some useful
take-aways for design teams in practice. First, they provide a
different conclusion about interactions between team members
from the computational findings in the literature. Recall that the
study by McComb et al. suggests that team members should not
interact with each other when they all work on the same problem
without a division of labor [5] whereas the existence of a division
of labor in a team benefits from interactions for effective solutions
based on our findings. Note that this result does not contradict this
literature since the study conditions in terms of task allocations
are different. Combining our results with those from [5], we
can see when team communication is beneficial and when it is
not. In our study, even though the agents are responsible for their
own regions, information from other regions in the design space
leads these agents to find solutions in their own regions faster
than in the case where there is no interaction among agents. The
convergence results also support the argument that teams are as
good as the most vital link in the team [22], i.e., the performance
of a team is determined by the best agent in the team. Note that

(a) Method 1

(b) Method 2

FIGURE 7: DESIGN SPACE EXPLORATION IN SCENARIO 2

these results do not include any human factors that might add
some adverse effects due to communication problems, trust and
cognitive biases.

7. CONCLUSION AND FUTURE WORK
The study is motivated to answer the following question:

What is the impact of information exchange among agents in a
multi-agent system (MAS) on their performance in searching a
complex unknown design space collaboratively for the global op-
timum? To this end, the paper presents a multi-agent Bayesian
optimization (MABO) framework that addresses the challenges of
finding the global optimum of complex objective functions with
many local optima. The framework involves dividing the design
space into local regions and allowing agents in local searches to
share their sampled design points with a global evaluator. The
global evaluator computes the posterior mean and variance and
evaluates the acquisition function to recommend the next sam-
pling decisions for local agents. To answer the motivation ques-
tion, the proposed method was compared with a MABO method
that does not allow information exchange. The results show that

7 Copyright © 2023 by ASME



(a) Method 1

(b) Method 2

FIGURE 8: CONVERGENCE SPEED IN SCENARIO 2

allowing information exchange and global-local interaction sig-
nificantly improves convergence speed (more than five times on
average), regardless of function complexity and MAS team size.
Therefore, we conclude that the proposed MABO framework is
effective in exploring complex design spaces and finding the op-
timal solution.

Although promising, there are a number of limitations in our
current study, which lead to several future directions. First, we
did not consider the cost in the current framework. However,
in reality, the cost could be associated with search and infor-
mation sharing. In our future study, in addition to evaluating
search performance quantified by convergence speed, cost shall
be the other dimension in performance evaluation. Second, an
unknown space must involve unknown constants. In our current
study, agents are assumed to have access anywhere in the des-
ignated region. In future work, this assumption can be relaxed
by introducing "infeasible area" in the local search regions, so
agents are not allowed to sample candidate points in the infeasi-
ble areas. Moreover, we can investigate how the location of the
infeasible area would influence the agents’ search performance.

(a) Method 1

(b) Method 2

FIGURE 9: DESIGN SPACE EXPLORATION IN SCENARIO 3

Third, in the current study, we conducted the experiment with
the MABO framework using one particular acquisition function
and a special kernel setting of the Gaussian process. In future
studies, experimental results will be collected with more com-
prehensive hyperparameter settings, so a complete picture of the
agents’ search performance can be obtained. Fourth, this paper
only presents the MABO solution to 2-dimensional design space
exploration. In higher-dimensional cases, more complex divi-
sion strategies could be required to partition the space. Lastly,
since information exchange and global-local interaction are en-
abled in our framework, this opens many research questions for
the community. For example, when the amount of information
and frequency can be controlled, how could the variations influ-
ence the agents’ search performance? In our future work, we are
motivated to answer these questions based on the work presented.
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