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ABSTRACT
Topology optimization is one of the most flexible structural

optimization methodologies. However, in exchange for its high
degree of design freedom, typical topology optimization cannot
avoid multimodality, where multiple local optima exist. This
study focuses on developing a gradient-free topology optimiza-
tion framework to avoid being trapped in bad local optima.
Its core is a data-driven multifidelity topology design (MFTD)
method, in which design candidates generated by solving low-
fidelity topology optimization problems are updated based on
evolutionary algorithms (EAs) through high-fidelity evaluation.
The key component of the data-driven MFTD is a deep gener-
ative model that compresses the dimension of the original data
into a low-dimensional manifold, i.e., the latent space. In the
original framework, convergence variability and premature con-
vergence problems arise as the generative process is performed
randomly in the latent space. Inspired by a popular crossover op-
eration, we propose a data-driven MFTD framework incorporat-
ing a new crossover operation called latent crossover. We apply
the proposed method to a maximum stress minimization prob-
lem in 2D structural mechanics. The results demonstrate that
the latent crossover improves convergence stability compared to
the original method. Furthermore, the optimized designs exhibit
performance comparable to or better than that in conventional
gradient-based topology optimization using the P-norm measure.
Keywords: Topology optimization; Deep generative model;
Maximum stress minimization; Latent crossover

1. INTRODUCTION
Topology optimization, first proposed by Bendsøe and

Kikuchi [1], enables the determination of an optimized material
distribution for a structural optimization problem and offers a high
degree of design freedom [2]. While this attractive feature makes
it applicable to various structural design problems, topology op-
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timization faces challenges with multimodality, where multiple
local optima exist in the solution space. That is, gradient-based
optimizers used in conventional topology optimization methods
may fall into low-performance local optima. This intractable
characteristic is often seen in a strongly nonlinear problem, e.g.,
minimax problems; thus it is challenging to obtain structures that
exhibit high levels of performance.

One of the standard ways to overcome the problem of multi-
modality is evolutionary algorithms (EAs) since they are gradient-
free [3]. An EA, such as the genetic algorithm, mimics the
evolutionary mechanisms of living organisms, and solutions are
represented as strings of genes. The solution search is performed
by applying three basic genetic operations: selection, crossover,
and mutation, to a population of individuals. Each iteration of
these genetic operations is referred to as a generation. The selec-
tion is an operation that retains individuals with relatively better
objective function values in the population for the next genera-
tion. The crossover is an operation that partially exchanges genes
between selected individuals to generate new individuals (off-
spring) that inherit traits from old ones (parents). However, if
some individuals in the population have significantly higher fit-
ness than others in the early stages of the search, they may weed
out others by selection and crossover, leading to a loss of diversity
and a high probability of premature convergence [4]. The muta-
tion is an operation that introduces new genes into the population
by changing a portion of the genes of selected individuals, which
helps maintain diversity in the population. Several methods [5–
8] have been proposed to solve topology optimization problems
using EAs, taking advantage of their gradient-free nature. While
they can perform a global search for strongly nonlinear problems,
Sigmund [9] has pointed out issues with EA-based topology opti-
mization. That is, topology optimization problems often require
a large number of design variables, and the computational cost
of the EA increases exponentially with the number of design
variables due to the so-called curse of dimensionality.

As a potentially promising way to avoid the curse of dimen-
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(a) Parent individuals (b) Uniform random sampling (c) Normal random sampling (d) Latent crossover

FIGURE 1: THE PROBABILITY DISTRIBUTION FOR GENERATING OFFSPRING IN 2D LATENT SPACE

sionality, some deep generative models can dramatically reduce
the dimensionality of the topology optimization problem. In deep
generative models such as variational autoencoders (VAEs) [10]
and generative adversarial networks (GANs) [11], an encoder is
built to compress high-dimensional data into a low-dimensional
manifold, called latent space. In addition, a decoder reconstructs
high-dimensional data from the latent space. As a review pa-
per [12] mentioned, relevant studies on deep generative models
for engineering design problems have increased dramatically in
recent years. As pioneering work, Guo et al. [13] proposed a
data-driven indirect design representation for high-dimensional
design problems, which iteratively optimizes the latent space of
a VAE as the design variable field. Oh et al. [14] proposed
a design framework that iteratively trains a GAN to generate a
variety of designs. Kazemi et al. [15] proposed a method to gen-
erate conceptual designs using a GAN for multi-physics topology
optimization problems.

Based on combining EAs and deep generative models, Yaji
et al. [16] proposed a data-driven multifidelity topology design
(MFTD) method that enables gradient-free topology optimiza-
tion under a high degree of design freedom. The basic idea of
data-driven MFTD is that design candidates, generated by solv-
ing low-fidelity topology optimization problems, are iteratively
updated using an EA that guides queries to a high-fidelity anal-
ysis model. The key to this framework builds upon data-driven
topology design [17], incorporating a VAE as a crossover-like
operation for each optimization step. The effectiveness of the
framework was demonstrated for topology optimization prob-
lems that are hard to solve directly with conventional methods,
such as minimax and turbulent flow problems. However, since
the generative process in a VAE is based on a uniform random
sampling in the latent space, it is expected that the effectiveness
of the approach can be improved if the crossover operation is
adopted based on EAs.

This paper proposes a data-driven MFTD framework incor-
porating a particular crossover operation based on EAs, called
latent crossover. Specifically, simplex crossover (SPX) [18]—
a crossover operator of real-coded genetic algorithms (RC-
GAs) [19]—is used for latent crossover. We apply the proposed
method to a maximum stress minimization problem of an L-
bracket and verify the effectiveness of latent crossover, compar-

ing it with the original data-driven MFTD. We also discuss its
usefulness by comparing the results of the proposed method with
those of gradient-based topology optimization using the 𝑃-norm
measure for the maximum stress minimization problem.

2. LATENT CROSSOVER
In data-driven MFTD [16], whose details are descrived in

Section 3, the high-dimensional material distribution data of the
design candidates are encoded by a VAE into low-dimensional
real-valued latent variables that correspond to EA genes, making
the framework similar to RCGAs among EAs. Its high represen-
tation flexibility makes crossover more important in the RCGA
than in the binary GA, and it has been the subject of various
studies. For example, Kita and Yamamura [20] proposed a the-
ory called the function specialization hypothesis concerning the
selection and crossover operators in RCGAs, which includes the
following ideas:

• The selection operator eliminates individuals with low fit-
ness and, meanwhile, selects and replicates those with high
fitness. Therefore, it is designed to narrow the population
distribution gradually.

• The crossover operator transforms the distribution by com-
bining parent individuals to generate offspring and is de-
signed to retain the ability to generate new offspring for a
finite population, but not to change the population distribu-
tion.

The following design guideline [21–23] for RCGA crossover op-
erators was proposed focusing on the perspective of statistics
to concretize the above theory. That is, the crossover operator
should be designed to inherit statistics such as the mean vector
and variance/covariance matrix of the population.

In data-driven MFTD, candidate solutions are generated
through random sampling from the latent space of a VAE, so
in terms of the genetic distribution and statistics of the popu-
lation, we consider the probability distribution of the generated
offspring. Fig. 1 shows an example of the probability distribution
for generating offspring in a two-dimensional latent space. The
darker areas have a higher probability of generating offspring.
Assuming that the distribution of the parent population, as shown
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in Fig. 1a, is given, data-driven MFTD performs sampling by
uniform random numbers in the latent space, regardless of the
distribution of the parent population. The resulting probability
distribution of the generated offspring becomes the one shown in
Fig. 1b. It cannot be said that the statistics of the parent popula-
tion are inherited. Although the use of a VAE as a deep generative
model enables a crossover-like operation in data-driven MFTD,
it remains only as an operation similar to crossover and cannot
be considered strictly performing crossover because of random
sampling. Since the input data follows a normal distribution in
the latent space due to the nature of VAEs, generating offspring
through sampling based on a normal distribution rather than a uni-
form distribution is also possible. However, as shown in Fig. 1c,
the probability of generated offspring does not follow the dis-
tribution of the parent population; therefore, the statistics of the
parent population are not inherited in this case. Based on EA’s
concept, preserving the diversity of the population helps prevent
premature convergence, but crossover-like sampling from the la-
tent space using random sampling can lead to an early loss of
diversity in the population. This results in fluctuation in conver-
gence and, in the worst case, failures to perform a global search,
leading to the possibility of getting stuck in local optima.

As mentioned above, it is impossible to strictly inherit the
statistical characteristics of the parent population through random
sampling. According to its nature, a crossover operation gener-
ates offspring by targeting small areas for parents who are close
together and large areas for those who are far apart [24]. Thus,
applying latent crossover to the parent population in Fig. 1a, the
probability distribution of generated offspring is expected to be-
come the one shown in Fig. 1d. Therefore, it can be said that a
crossover operation in the latent space, i.e., the latent crossover,
is promising.

3. FRAMEWORK
3.1 Data-Driven MFTD with Latent Crossover

Data-driven MFTD focuses on solving the following general
multi-objective topology optimization problem:

minimize
𝜸

[𝐽1 (𝜸), 𝐽2 (𝜸), . . . , 𝐽𝑟0 (𝜸)]

subject to 𝐺𝑗 (𝜸) ≤ 0,
𝛾𝑒 ∈ {0, 1}, 𝑒 = 1, 2, . . . , 𝑁.

(1)

Here, 𝐽𝑖 (𝑖 = 1, 2, . . . , 𝑟o) and 𝐺𝑗 ( 𝑗 = 1, 2, . . . , 𝑟c) are the ob-
jective and constraint functions, respectively. The optimization
problem defined by Eq. (1) is a 0-1 optimization problem with
𝜸 composed of 𝑁 design variables. Since such a problem is
a nonlinear mathematical optimization problem with a massive
number of design variables, we adopt the concept of multifidelity
topology design (MFTD) [25] and divide the problem of Eq. (1)
into two procedures: low-fidelity optimization and high-fidelity
evaluation, to solve the problem.

Using the MFTD approach and a deep generative model,
data-driven MFTD iteratively updates solution candidates in a
gradient-free manner similar to EAs. Note that the latent space is
updated at every optimization step. The schematic flowchart of
the proposed data-driven MFTD with latent crossover is shown
in Fig. 2, and the details of each step are explained below.

FIGURE 2: SCHEMATIC FLOWCHART OF DATA-DRIVEN MFTD
WITH LATENT CROSSOVER

Initial Data Generation For the original optimization problem
of Eq. (1), we solve a low-fidelity optimization problem
formulated as follows, which can be easily solved as a simple
pseudo-problem:

minimize
𝜸 (𝑘)

˜︁𝐽𝑖 (𝜸 (𝑘 ) )

subject to ˜︁𝐺𝑗 (𝜸 (𝑘 ) , s(𝑘 ) ) ≤ 0,

𝛾
(𝑘 )
𝑒 ∈ [0, 1], 𝑒 = 1, 2, . . . , 𝑁

for given s(𝑘 ) , 𝑘 = 1, 2, . . . , 𝐾.

(2)

Here, ˜︁𝐽𝑖 and ˜︂𝐺𝑗 are the objective and constraint functions for
the low-fidelity optimization problem, respectively, which
can be easily computed by pseudo-functions. Additionally,
s = [𝑠1, 𝑠2, . . . , 𝑠𝑁sd ] represents the set of 𝑁sd types of artifi-
cial design parameters called seeding parameters, and s(𝑘 ) is
the sample point of s. For instance, the seeding parameters
are defined as a maximum limit of a constraint and optimiza-
tion parameters such as a filter radius. By solving the relaxed
low-fidelity optimization problem of Eq. (2) under various
seeding parameter settings, where 𝛾 (𝑘 )𝑒 is relaxed to [0, 1],
𝐾 kinds of promising and diverse material distributions are
prepared as initial solutions.
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Evaluation The performance of candidate solutions is evaluated
using a high-fidelity analysis model, which is used to com-
pute the original multiple objective functions 𝐽𝑖 and 𝐺𝑗 in
Eq. (1).

Selection As mentioned in Section 2, the selection is a critical
genetic operation in RCGAs. For problems as in Eq. (1), it
is necessary to evaluate solutions using multiple objective
functions and select those to be preserved in the next gen-
eration. This paper uses the nondominated sorting genetic
algorithm II (NSGA-II) [26] strategy as a selection algo-
rithm, which selects candidates in a multi-objective manner
by ranking them based on the Pareto dominance relation
using distances in the objective function space. The non-
dominated candidate solutions, which are not dominated by
any other solutions, are selected from the population, and
then a set of Pareto solutions is constructed.

Crossover A VAE is trained with the Pareto solution set as input
to construct a latent space, where high-dimensional material
distributions are encoded into low-dimensional latent vari-
ables. The latent crossover is performed using these latent
variables to generate offspring in the latent space. Decoding
the offspring generated by latent crossover yields new mate-
rial distributions that inherit the characteristics of the input
data, and candidate solutions are generated. The details of
the VAE and the latent crossover operation are described in
Sections 3.2 and 3.3, respectively.

Mutation The latent space of the VAE is constructed using the
Pareto solution set of the current generation and corresponds
to a subspace in which the solutions are distributed. Even
if the mutation method of RCGAs, such as the nonuniform
mutation operator [27], is applied, its outcome is limited to
a specific subspace against the whole solution space. This
limitation is because such a mutation only performs a local
search in the subspace around the solutions distributed in the
whole solution space. Thus, it cannot be expected to main-
tain the diversity of the population and prevent premature
convergence, as discussed in Section 1.
Therefore, under the following constraint function, the low-
fidelity optimization problem is solved using the same
method as when generating initial data:

˜︁𝐺mut (𝜸 (𝑚) ) =
𝑁∑︂
𝑒=1

𝑣𝑒𝛾
(𝑚)
𝑒 𝛾

ref(𝑚)
𝑒 ≤ ˜︁𝐺max

mut |𝐷 |, (3)

where 𝑚 = 1, 2, . . . , 𝑁mut is the number of mutants, 𝑣𝑒 is
the elemental volume, �̃�max

mut is a parameter that controls the
degree of overlap between the reference material distribution
𝜸ref(𝑚) and the design variable 𝜸 (𝑚) , and |𝐷 | = ∑︁𝑁

𝑒=1 𝑣𝑒 is
the volume of 𝐷. In brief, the role of the constraint of Eq. (3)
is to generate a different material distribution from 𝛾

ref(𝑚)
𝑒 .

This paper uses the average value of material distributions
in a given generation as a reference structure. This average
distribution can be considered to be representative of the
material distributions of the population. By solving the low-
fidelity optimization problem with the constraint function

FIGURE 3: ARCHITECTURE OF VAE

of Eq. (3) and the reference structure, promising candidate
solutions can be generated with unique features that are not
present in the population. This approach enables a mutation-
like operation, similar to the mutation in EAs, to maintain
diversity and prevent premature convergence. It should be
noted that the mutants added to the population through this
operation are still limited to a specific subspace and may not
search the whole solution space comprehensively.

3.2 Variational Autoencoder
Fig. 3 shows the architecture of the VAE used in the nu-

merical examples in Section 4. 6400 input/output elements are
combined into two 8-dimensional layers, 𝝁 and 𝝈, through a hid-
den layer of 512 dimensions. 𝝁 is the mean vector, and 𝝈 is the
variance vector of the latent variables z. The following equation
defines the latent variable vector z:

z = 𝝁 + 𝝈 ◦ 𝜺, (4)

where ◦ is the operator that calculates the element-wise product,
and 𝜺 is a vector of random numbers from the standard normal
distribution. In VAEs, unsupervised learning is performed using
the same dataset for both input and output, constructing the latent
space. The following loss function 𝐿VAE is used for the training:

𝐿VAE ≔ 𝐿recon + 𝜚𝐿KL, (5)

𝐿KL = −1
2

𝑁lt∑︂
𝑖=1

(︂
1 + log(𝜎2

𝑖 ) − `2
𝑖 − 𝜎2

𝑖

)︂
, (6)

where 𝑁lt is the dimension of the latent space, `𝑖 and 𝜎𝑖 are the
𝑖-th elements of 𝝁 and 𝝈. 𝐿recon is a reconstruction loss using
mean squared error, and 𝐿KL is known as the Kullback-Leibler
(KL) divergence. 𝜚 is the weight parameter that controls the
influence of the KL divergence to regularize the latent space to
the standard normal distribution.

Compared to simple dimensionality reduction using autoen-
coders (AEs), VAEs are trained by incorporating probabilistic
variation through 𝜺, allowing for estimation of the given dataset
distribution, and can be used as a deep generative model for
continuous data generation. When using material distributions
as a dataset for topology optimization, essential features within
the dataset are extracted by compressing them into dramatically
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FIGURE 4: SPX OFFSPRING GENERATION AREA FOR 2D

smaller latent variables. According to the standard normal dis-
tribution, latent variables do not take extremely large or small
values. To represent all material distributions without exces-
sive randomness, original data-driven MFTD generates offspring
by sampling uniform random numbers in [−4, 4], which covers
99.7% of the data within ±4𝜎, for each latent variable. However,
as mentioned in Section 2, the generation of probability distri-
bution shown in Fig. 1 can be problematic. In this paper, we
perform latent crossover using the crossover operator explained
in Section 3.3.

3.3 Simplex Crossover
Due to the high degree of freedom of representing genes

as real-valued vectors, the RCGA has limited offspring that can
be generated from selected parent individuals using crossover
operators, such as the single-point crossover commonly used in
binary evolutionary algorithms. Several crossover operators for
RCGAs [18, 28, 29] have been proposed to address this issue.
This paper uses the simplex crossover (SPX) [18] for a latent
crossover operator. SPX is one of the multi-parent crossover
operators for RCGAs that generates offspring using three or more
parent individuals and is consistent with the crossover design
guidelines [21–23] as it inherits the average value and covariance
matrix of the population.

When the search space is defined as the real 𝑛-dimensional
space R𝑛, where individuals are represented as vectors of real
numbers, the algorithm for SPX is as follows.

(1) Randomly select (𝑛 + 1) parent individuals 𝑷0, 𝑷1, . . . , 𝑷𝑛

from the population.

(2) Calculate the centroid 𝑮 of the parent individuals as follows:

𝑮 =

𝑛∑︂
𝑖=0

𝑷𝑖 . (7)

(3) Calculate 𝒙𝑘 and 𝑪𝑘 for 𝑘 = 0, 1, . . . , 𝑛 as follows:

𝒙𝑘 = 𝑮 + Y(𝑷𝑘 − 𝑮), (8)

FIGURE 5: DESIGN PROBLEM OF L-BRACKET

𝑪𝑘 =

{︄
0 (𝑘 = 0)
𝑟𝑘−1 (𝒙𝑘−1 − 𝒙𝑘 + 𝑪𝑘−1) (𝑘 = 1, . . . , 𝑛).

(9)

Here, Y is a parameter called the expansion rate, and
√
𝑛 + 2

is the recommended value for inheriting population statis-
tics [18]. 𝑟𝑘 is obtained by transforming a uniform random
number 𝑢(0, 1) in the interval [0, 1] as follows:

𝑟𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (𝑘 < 0)
𝑢(0, 1) 1

𝑘+1 (𝑘 = 1, . . . , 𝑛 − 1)
1 (𝑘 ≥ 1).

(10)

(4) Generate a child individual 𝑪 as follows:

𝑪 = 𝒙𝑛 + 𝑪𝑛. (11)

With these procedures, SPX generates offspring uniformly within
the enclosed space of the Y-extended polytope 𝑃′

0, 𝑃
′
1, . . . , 𝑃

′
𝑛

centered at the centroid of the parent individuals 𝑃0, 𝑃1, . . . , 𝑃𝑛,
as shown in Fig. 4. Therefore, SPX is a crossover operator that
achieves a balance between exploration and exploitation [30].

4. NUMERICAL EXAMPLES
4.1 Problem Setting

This study applies the proposed method to the design prob-
lem of a two-dimensional L-bracket. It is widely used as a bench-
mark for stress-based topology design [31–34] and is a minimax
problem with its high nonlinearities caused by the stress singu-
larity, called re-entrant corner, at the inner corner. It can be
formulated as the following multi-objective optimization prob-
lem:

minimize
𝜸

𝐽1 = max (𝜎vM) ,

𝐽2 =

𝑁∑︂
𝑒=1

𝑣𝑒𝛾𝑒

subject to 𝛾𝑒 ∈ {0, 1}, 𝑒 = 1, 2, . . . , 𝑁.

(12)

Here, 𝜎vM is the von Mises stress, the maximum of which is an
objective function, and the volume is the other objective function.
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(a) Random sampling

0 10 20 30 40 50 60 70 80 90 100

Iteration

1

1.1

1.2

1.3

1.4

1.5

1.6

R
e
la

ti
ve

 h
yp

e
rv

o
lu

m
e

(b) Latent crossover

FIGURE 6: HYPERVOLUME FOR TEN TRIALS

Note that the design variables are defined as discrete values, 0
or 1, to deal with the ideal topology optimization problem with
high-fidelity evaluation.

The design domain and boundary conditions for the L-
bracket, as shown in Fig. 5, include fixing the upper end and
applying a vertical downward distributed load at the top corner
to avoid stress concentration. The length of the bracket is set to
𝐿 = 2, and the design domain is divided into 6400 square ele-
ments (𝑁 = 6400). Young’s modulus of the structural material is
set to 1, one of the voids is set to 1 × 10−9 instead of 0 to avoid
the singular stiffness matrix, and Poisson’s ratio is set to 0.3.

Under the assumption that a promising solution can be ob-
tained even with stiffness maximization [32], we formulate the
minimum compliance problem and use it as a low-fidelity opti-
mization problem:

minimize
𝜸 (𝑘)

˜︁𝐽1 = fTu

subject to ˜︁𝐽2 =

𝑁∑︂
𝑒=1

𝑣𝑒𝛾
(𝑘 )
𝑒 ≤ 𝑠 (𝑘 ) ,

𝛾
(𝑘 )
𝑒 ∈ [0, 1], 𝑒 = 1, 2, . . . , 𝑁

for given 𝑠 (𝑘 ) .

(13)

Here, f and u are vectors in the equilibrium equation, namely,
Ku = f, with the global stiffness matrix K. In Eq. (13), the volume
is converted from an objective function to a constraint function
based on the Y-constraint method for the original optimization
problem of Eq. (12), and since 𝛾 (𝑘 )𝑒 is relaxed to [0, 1], this
problem can be easily solved using the density-based method [2].
Note that a design variable filter [35] is applied to ensure the
smoothness of 𝜸 in 𝐷.

As for the parameters related to the overall procedure, the
number of initial data and Pareto solutions from the selection
operation are both set to 100. Regarding the parameters related
to the mutation operation, 𝑁mut is set to 16 and ˜︁𝐺mut is set to 0.01.

100 101 102
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FIGURE 7: LEARNING HISTORY AT ITERATION 0 FOR THE ARCHI-
TECTURE IN FIGURE 3, THE LOSS FUNCTION IN EQUATION 5, AND
THE TRAINING DATA DISCRIVED IN SECTION 4.4

During the latent crossover, 9 parent individuals are used by the
SPX method because the dimension of the VAE latent space is 8.

4.2 Verification of VAE Model
First, we verify the VAE model and parameters, which plays

a central role in the data-driven MFTD. After preliminary studies
on the hyperparameters, we establish the VAE architecture as
shown in Fig. 3. The VAE is trained with 100 material distribution
samples with 500 epochs, a batch size of 20, and a learning rate
of 0.001. The training is terminated if the loss function 𝐿VAE
of Eq. (5) is not improved in every iteration for a total of 50
iterations.

Fig. 7 shows the history of the loss function in Eq. (5) dur-
ing training using the material distribution data at iteration 0
descrived in Section 4.4 as an example. The loss function con-
verges smoothly, indicating that the VAE is appropriately trained
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FIGURE 8: COMPARISON OF HYPERVOLUME

under the investigated condition.

4.3 Verification of Latent Crossover Effect
For the problem set up in Section 4.1, we compare the orig-

inal and proposed data-driven MFTD frameworks. Since both
methods involve random effects, we evaluate and compare them
using the hypervolume indicator [36] over ten trials, which is
normalized using the initial one. The hypervolume is a measure
for the convergence performance of multi-objective optimization.
In the case of two objectives, it is represented by the area formed
by the reference point and the Pareto front in the objective space.
Although mutation is usually performed at regular intervals of
iterations, we confirmed that in the case of this design problem,
the mutants are selected only once at the beginning, and no mu-
tants are selected as elite solutions thereafter. Therefore, we used
the initial data composed of the mutants and initial solutions to
compare them with the search performance by crossover without
mutation.

Fig. 6 shows the iteration history of the hypervolume indica-
tor over ten trials. In terms of the value at 100 iterations, random
sampling in Fig. 6a shows a considerable variation in the range
from 1.38 to 1.52, while the latent crossover in Fig. 6b remains
stable in the range from 1.48 to 1.54. The average values of each
hypervolume indicator in the ten trials are plotted in Fig. 8. Up
to iteration 30, the value of random sampling is higher than that
of latent crossover. However, after iteration 30, this relationship
is reversed, and at iteration 100, the average value of random
sampling is 1.45, while that of latent crossover is 1.50, indicat-
ing a difference of 5%. In addition, at iteration 100, the lower
limit of the 95% prediction intervals for the latent crossover case
exceeds the upper limit for the random sampling case. A t-test
was performed on the hypervolume values at iteration 100, and
the p-value was 0.00180, which is less than 0.05. Therefore, it
can be considered statistically significant that the latent crossover
outperforms the random sampling.

The SPX operator used as the latent crossover operator grad-
ually changes the population distribution while inheriting the

FIGURE 9: OPTIMIZED STRUCTURES BY GRADIENT-BASED
TOPOLOGY OPTIMIZATION USING THE P -NORM MEASURE

statistics, so the increase in hypervolume is slower in the early
stages of the search (up to iteration 30) compared to the random
sampling. However, this approach maintains diversity and pre-
vents premature convergence, which leads to a more advanced
Pareto front in the final iteration (at iteration 100). This im-
provement can be explained based on the theory that the balance
between exploration and exploitation [30], i.e., expanding the
Pareto front and advancing it, respectively, is significant in EAs.
From these results and discussions, it can be concluded that data-
driven MFTD achieved stable and high search performance with
the latent crossover based on the theory of RCGAs.

4.4 Validity of Optimized Structure
Next, we compare structures obtained through data-driven

MFTD with structures obtained through direct optimization using
a gradient-based approach without relying on MFTD principles.
However, deriving sensitivity analysis for the optimization prob-
lem defined by Eq. (12) is impossible because 𝐽1 is the maximum
value of the von Mises stress and 𝛾𝑒 is a discrete value {0, 1}.
Therefore, we use the 𝑃-norm measure [37, 38], commonly used
in stress-based topology optimization [32, 33], and relax 𝛾𝑒 to
[0, 1], as follows:

minimize
𝜸

𝐽 =

(︄
1
𝑁

𝑁∑︂
𝑒=1

(𝜎vM)𝑃
)︄ 1

𝑃

subject to 𝐺 =

𝑁∑︂
𝑒=1

𝑣𝑒𝛾𝑒 ≤ 𝑉max |𝐷 |,

𝛾𝑒 ∈ [0, 1], 𝑒 = 1, 2, . . . , 𝑁.

(14)

Here, 𝑃 is the stress norm parameter, and 𝐽 is called 𝑃-norm
stress. For the multi-objective problem formulated in Eq. (12), the

7 Copyright © 2023 by ASME



FIGURE 10: INITIAL DATA GENERATED BY SOLVING A MEAN COMPLIANCE MINIMIZATION PROBLEM UNDER VARIOUS VOLUME CON-
STRAINT SETTINGS AS THE LOW-FIDELITY TOPOLOGY OPTIMIZATION PROBLEM

FIGURE 11: OPTIMIZED STRUCTURES BY DATA-DRIVEN MFTD

volume is set as the constraint function based on the Y-constraint
method. When the stress norm parameter 𝑃 → ∞, the 𝑃-norm
stress approaches the maximum stress value max(𝜎vM), but the
smoothness is lost. On the other hand, when 𝑃 = 1, the smooth-
ness is maintained, but it approaches the average stress value,
resulting in an optimized structure closer to the compliance min-
imum design. Previous studies [32, 34] have shown that 𝑃 = 8
yields the most reasonable design, but in order to set an objective
function closer to the maximum stress value, this paper uses a
method that iteratively increases 𝑃 from 8 to 16 and 32 using
the continuation method [39]. This operation enables us to use
a more rigorous approximation function while stably solving the
optimization problem. We set the 𝑃-norm stress based on the
result of the continuous approach as the objective function and
use the method of moving asymptotes (MMA) [40] as the opti-
mization method. Fig. 9 shows 60 directly solved designs while
changing 𝑉max from 20% to 50% in 0.5% increments.

Fig. 10 shows the initial dataset obtained by solving the low-

fidelity optimization problem in Eq. (13), and Fig. 11 shows the
optimized structures obtained by data-driven MFTD with 300
iterations. The initial dataset, which consists of compliance min-
imization designs, has structures that cause stress concentration at
their re-entrant corners, whereas the structures obtained by data-
driven MFTD have rounded shapes with their re-entrant corners
smoothed out. The improved performance and reduced volume
can be seen by comparing the plots of iteration 0 and iteration
300 in the objective function space shown in Fig. 12.

When comparing the performance of Pareto solutions ob-
tained by data-driven MFTD and the solutions obtained by direct
optimization in the objective space shown in Fig. 12, it can be
confirmed that equivalent performance solutions are obtained in
general. In particular, data-driven MFTD outperforms direct op-
timization for solutions in the volume range of 0.7 to 1.0. In
addition, while the solutions for direct optimization are sparsely
distributed in the objective space due to the instability of the
objective function, the solutions for data-driven MFTD form an

8 Copyright © 2023 by ASME
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orderly Pareto front.
The designs shown in Fig. 9 obtained by direct optimization

are structures that appear to be composed of straight members
and often have triangular or rectangular voids. One advantage of
data-driven MFTD is that material distributions are represented
as vectors and updated using a VAE, eliminating the need for
sensitivity analysis. Therefore, as in Eq. (12), the maximum
stress can be used directly as the objective function. This feature
leads to generally curved structures with rounded appearances, as
shown in Fig. 11, suggesting that stress concentration is avoided.
In addition, it is found that various patterns are obtained due to
the multimodality caused by the strong nonlinearity of the 𝑃-
norm measure, while the final results of the proposed method in
Fig. 11 relatively tend to have a similar feature in terms of their
topology. Although we cannot prove that the obtained Pareto
solutions are the global optima respectively, the result indicates
that the data-driven MFTD method is likely to yield a unique set
of Pareto solutions through an extensive search process.

5. CONCLUSION
This paper proposed a data-driven multifidelity topology de-

sign (MFTD) framework incorporating latent crossover that per-
forms crossover in the latent space of the variational autoencoder
(VAE). Since the latent space is constructed as continuous real
numbers, this paper employed the simplex crossover (SPX) as
a latent crossover operator based on the theoretical aspects of
crossover in real-coded genetic algorithms (RCGAs). The results
showed that the proposed method improves the search perfor-
mance compared to the original method, which performs random
sampling in the latent space. As an interesting aspect, this pa-
per confirms that the proposed method achieves almost the same
performance as that of gradient-based topology optimization us-
ing the 𝑃-norm measure for the maximum stress minimization
problem, despite only solving mean compliance minimization as
the low-fidelity topology optimization problem. Furthermore, it
was found that the final results of the proposed method tend to

achieve a similar topology, while the optimized results of the
gradient-based method are various patterns due to the multi-
modality caused by the strong nonlinearity of the 𝑃-norm mea-
sure. Hence, the data-driven MFTD approach is expected to yield
a unique set of Pareto solutions through gradient-free searching.

To verify the efficacy of the proposed framework on differ-
ent optimization problems, we plan to apply it to other problems
involving strongly nonlinear physical phenomena, such as turbu-
lence and geometric nonlinearity.
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