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Objective

Develop a multi-agent system (MAS) based
on Bayesian optimization (BO) [1| to
model a design team’s sequential decision-making

in the exploration of complex design spaces.

Research Overview

Design space exploration (DSE) involves
finding the optimal solution within a set of require-
ments by examining various design alternatives [2|.

It is a great challenge to explore complex design
spaces with many local optima. Therefore, form-
ing a MAS as the design team is crucial for effective
DSE.
My research goal is to analyze team global-local
communication and its impact on exploration
performance (convergence speed). There are two key
research questions (RQs) to address:

e RQ1: What are the guiding principles for a
utility-based MAS search strategy that is
congruent with the decision-making process of
human design teams?

e RQ2: In the context of a utility-based MAS

search strategy, how can local-global
communication influence individual agent
behavior?

Problem Formulation

The goal of agent 7 in a MAS, where: € {1,2,..., N}
is to find the location of global minimum x*

X" = argmingeaf(X),

where f(-) is a black-box objective function and x =
(x1, To, ..., xq) € A, A is the design space.
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Figure 1: An example of the objective function
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MABO Framework

e

Global evaluator

l

{Gaussian process } : N

[Acquisition function}
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Figure 3: An example of MABO

Experimental Results

o Method 1: MABO without a global evaluator
o Method 2: MABO with a global evaluator
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(b) Spacexaivision

Figure 4: Cosines function with a MAS of three agents.
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Figure 5: Faster convergence speed to local and global optima.

Figure 6: Eggholder function with a MAS of three agents.
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Figure 7: Faster convergence speed to

Figure 8: Eggholder function with a MAS of five agents.
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Insights and Conclusions
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local and global optima.
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Faster convergence to global optimum but not necessarily to the local optimum for every agent

Increase MAS team size — faster convergence

Increase complexity of objective function — slower convergence
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Figure 9: Faster convergence speed to global optima.
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