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Objective

Develop a multi-agent system (MAS) based
on Bayesian optimization (BO) [1] to
model a design team’s sequential decision-making
in the exploration of complex design spaces.

Research Overview

Design space exploration (DSE) involves
finding the optimal solution within a set of require-
ments by examining various design alternatives [2].
It is a great challenge to explore complex design
spaces with many local optima. Therefore, form-
ing a MAS as the design team is crucial for effective
DSE.
My research goal is to analyze team global-local
communication and its impact on exploration
performance (convergence speed). There are two key
research questions (RQs) to address:
• RQ1: What are the guiding principles for a

utility-based MAS search strategy that is
congruent with the decision-making process of
human design teams?

• RQ2: In the context of a utility-based MAS
search strategy, how can local-global
communication influence individual agent
behavior?

Problem Formulation

The goal of agent i in a MAS, where i ∈ {1, 2, ..., N}
is to find the location of global minimum x∗

x∗ = argminx∈Af (x),
where f (·) is a black-box objective function and x =
(x1, x2, ..., xd) ∈ A, A is the design space.

(a) Objective function (b) Space division

Figure 1: An example of the objective function

MABO Framework

Figure 2: MABO Framework

(a) Acquisition function (b) Sampling process

Figure 3: An example of MABO

Experimental Results

• Method 1: MABO without a global evaluator
• Method 2: MABO with a global evaluator

(a) Cosines function (b) Space division

Figure 4: Cosines function with a MAS of three agents.

(a) Method 1 (b) Method 2

Figure 5: Faster convergence speed to local and global optima.

(a) Eggholder function (b) Space division

Figure 6: Eggholder function with a MAS of three agents.

(a) Method 1 (b) Method 2

Figure 7: Faster convergence speed to local and global optima.

(a) Eggholder function (b) Space division

Figure 8: Eggholder function with a MAS of five agents.

Insights and Conclusions

Faster convergence to global optimum but not necessarily to the local optimum for every agent
• Increase MAS team size → faster convergence
• Increase complexity of objective function → slower convergence

(a) Method 1 (b) Method 2

Figure 9: Faster convergence speed to global optima.

Future Work
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